博客
关于我
KNN —— 基本介绍与简要实现
阅读量:347 次
发布时间:2019-03-04

本文共 522 字,大约阅读时间需要 1 分钟。

KNN算法

介绍

KNN(K-Nearest Neighbors)是一种经典的分类算法,其基本思想是通过找到某个样本的K个最近邻来预测其类别。这种方法在数据局部进行分类,属于局部方法。

K值的选择至关重要,通常K取奇数以避免平票。例如,在二分类问题中,K常设为1、3、5等。算法步骤包括计算测试点与所有训练点的距离、排序后选择前K个最近点,并根据这些点的类别分布归类测试点。

实现步骤

  • 计算距离:对于每个测试点,计算其到所有训练点的欧氏距离。
  • 排序:对所有距离按从小到大排序,找出最近的K个点。
  • 统计类别:统计前K个最近点中各类别的数量,选择数量最多的类别归类测试点。
  • 案例分析

    以鸢尾花数据集为例,数据包含四个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。类别分为山鸢尾花(0)、变色鸢尾花(1)、维吉尼亚鸢尾花(2)。此处采用K=5进行分类。

    通过上述算法,实现分类任务。代码使用sklearn中的鸢尾花数据集,切分训练集和测试集,应用KNN算法进行预测。最终结果表现在分类报告中,展示准确率、召回率及F1值等评估指标。

    该方法具有高效性和简单性,但适用场景主要限于小规模数据集。对于大规模数据集,可能需要降维或使用其他优化技术以提高性能。

    转载地址:http://hehe.baihongyu.com/

    你可能感兴趣的文章
    Nginx 学习(一):Nginx 下载和启动
    查看>>
    nginx 常用指令配置总结
    查看>>
    Nginx 常用配置清单
    查看>>
    nginx 常用配置记录
    查看>>
    nginx 开启ssl模块 [emerg] the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx
    查看>>
    Nginx 我们必须知道的那些事
    查看>>
    Nginx 的 proxy_pass 使用简介
    查看>>
    Nginx 的配置文件中的 keepalive 介绍
    查看>>
    Nginx 结合 consul 实现动态负载均衡
    查看>>
    Nginx 负载均衡与权重配置解析
    查看>>
    Nginx 负载均衡详解
    查看>>
    nginx 配置 单页面应用的解决方案
    查看>>
    nginx 配置https(一)—— 自签名证书
    查看>>
    nginx 配置~~~本身就是一个静态资源的服务器
    查看>>
    Nginx 配置清单(一篇够用)
    查看>>
    Nginx 配置解析:从基础到高级应用指南
    查看>>
    nginx+php的搭建
    查看>>
    nginx+tomcat+memcached
    查看>>
    nginx+Tomcat性能监控
    查看>>
    nginx+uwsgi+django
    查看>>